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S1: Transverse Vlasov-Poisson Model: for a coasting, single species beam Hamiltonian expression of the Vlasov equation:
with electrostatic self-fields propagating in a linear focusing lattice: d = Ofy  dxy Ofr dx| Ofi _
==+ — =4 —=. =
X1, X/J_ transverse particle coordinate, angle ds 9s ds  Ox. ds axJ—
/
q, m charge, mass fl (XLv X, 5) single particle distribution — % a}IlJ' . % _ aﬂ . 8']‘} =0
. I 0s ox', 0x ox, O0Ox
Vb, ﬁb axial relativistic factors H, (X 1, XlJ_, 3) single particle Hamiltonian Usi h . " L . + + =
Vlasov Equation (see J.J. Barnard, Introductory Lectures): sing tde equa%oni of motion:
_ —
ifl_ajl de.afL dxl_afL -0 dsxlgaxl X
ds 0s ds 0x ds 0%/, d_, 0Hy N N q 0¢
Exl % — | KX + Kyyy + o) 33202 %
Particle Equations of Motion: + TP +
d_ - _0HL d_ OH | OfL o O (F& % gy 8¢) ofL _
—X| = —X) = — - 1 a0 — | Rz y : =
ds x| ds + ox Os 0x mypfic? 0xy ) O0x/)
Hamiltonian (see S.M. Lund, lectures on Transverse Particle Equations of Motion): . . . ..
ics, i i :
1 5 1 1 q In formal dynamics, a “Poisson Bracket” notation is often employed:
/ 2 2
Hy = ox,"+ gha(s)a® + ghy (5107 + g 57 50 dy O OHL 0f OH. Of
e 5™ 0 Tk, ax. oxu ox,
Poisson Equation: $ § X, OXL XL 0xy
0 0 q _ o _
2 = +{Hy,f1}=0
Tt s )e= L [ax o5 ’
<8.’L’2 6y2 ¢ €0 L f
+ boundary conditions on ¢ Poisson Bracket
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Comments on Vlasov-Poisson Model

+ Collisionless Vlasov-Poisson model good for intense beams with many particles
- Collisions negligible, see: J.J. Barnard, Intro. Lectures
+ Vlasov-Poisson model can be solved as an initial value problem

1) fi(x1,%,s =s;) = Initial "condition” (function) specified
2) Vlasov-Poisson model solved for subsequent evolution in s
for fi(x1,x/,s) for s > s;

+ The coupling to the self-field via the Poisson equation makes the
Vlasov-Poisson model highly nonlinear

) 0? 0? p
p=afein (gptap)e—h

+ Vlasov-Poisson system is written without acceleration, but the transforms
developed to identify the normalized emittance in the lectures on
Transverse Particle Equations of Motion can be exploited to generalize all
result presented to (weakly) accelerating beams (interpret in tilde variables)

+ For solenoidal focusing the system must be interpreted in the rotating
Larmor Frame, see: lectures on Transverse Particle Equations of Motion
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Review: Focusing lattices, continuous and periodic
(simple piecewise constant):

a) Continuous

K (s) (K, =1x,=k}; =const) Lattice Period L,
ko
- Occupancy 7

b) Periodic Solenoid n € 10,1]

K, () (K =K) S
Solenoid description
carried out implicitly in
= Larmor frame
) L, 2R [see: S.M. Lund, lectures on
. d=(1-nL, Transverse Particle Equations]

) Periodic Quadrupole Doublet

Ky(s) (K =—Ky) a )
a7 Syncopation Factor «
di (2, &
F Quad L 1
D Quad| s o€ [07 5]
NL,/2
,{Qq _] 1
L, dy=of1-n)L, a = 5 = FODO
Lattice Period dy=(1-o)(1n )Lp
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Example Hamiltonians:
Continuous focusing: Ky, = Ky = kéo = const

1,2 1

q
my; By c?

¢

Solenoidal focusing: (in Larmor frame variables) Kz = Ky = £(S)

1,0 1 q
H =-X kx4t
1 QXJ‘ +2K/Xl+m’yg’ﬁ502¢
Quadrupole focusing: Kz = —Ky = K(5)
1,5 1 1 q
H, == / - 2 _ - 2
L=35%1 +2I£LE 5"y +7m’ygﬂf¢22¢
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Review: Undepressed particle phase advance 0 is typically employed to
characterize the applied focusing strength of periodic lattices:
see: S.M. Lund lectures on Transverse Particle Equations of Motion

x-orbit without space-charge satisfies Hill's equation

z"(s) + Kz (s)x(s) =0
i M, = 2x2 Transfer
( xx’((i)) ) =M.(s|s:)- ( s ) > Matrix f?ofne

§=358; to s
Undepressed phase advance

1
COS 0oy = §Tr M, (s; + Lp|s;)

+ Subscript 0x used stresses x-plane value and zero (Q = 0) space-charge effects
Single particle (and centroid) stability requires:

1 o
§|TI' Mx(Sz + Lp|81)| <1 e 0oz < 180

[Courant and Snyder, Annals of Phys. 3, 1 (1958)]
Analogous equations hold in the y-plane
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The undepressed phase advance can also be equivalently calculated from:

"
Wy, + KaWor — —3— =0
Wog

sitle (g
00z :/ 5
84 Woy

i

Wog (s + Lp) = wox(s)
woz > 0

+ Subscript Ox stresses x-plane value and zero (Q = 0) space-charge effects
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S2: Vlasov Equilibria: Plasma physics-like approach is to resolve
the system into an equilibrium + perturbation and analyze stability

Equilibrium constructed from single-particle constants of motion C,

fr=7({C}H =20 =

equilibrium
0

_fL Zaflds _0

Comments: ds
+ Equilibrium is an exact solution to Vlasov s’equation that does not change in
4D phase-space functional form as s advances
- Equilibrium distribution periodic in lattice period in periodic lattice
- Projections of the distribution can evolve in s in non-continuous lattices
- Equilibrium is time independent ( 9 / Ot = (0 ) in continuous focusing
+ Requirement of positive f| ({C;}) follows from single particle species
+ Particle conversation constraints are in the presence of (possibly s-varying)
applied and space-charge forces
- Highly non-trivial!
- Only one exact solution known for s-varying focusing using Courant-

Snyder invariants: the KV distribution to be analyzed in this lecture
SM Lund, NE 290H, Spring 2009
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//1 Example: Continuous focusing 1 = f, (H)

1 q
L=3 X, ? + [307& + T ¢ no explicit s dependence
df | B 8]1 OH, OfL OH . ofL see problem

sets for detailed
argument

ds =~ 0Os ox/| 'axl_ Ox, 0%/

0

_af aﬁ’ L 00 (OH, am%‘anl OHL\ _ .
T 0H, /93 OH, \0ox| 0x./ oxi. 0x,)

Showing that f; = fi (H) exactly satisfies Vlasov's equation for continuous
focusing

* Also, for physical solutions must require: f1(H1) >0
- To be appropriate for single species with positive density
+ Huge variety of equilibrium function choices f1 (Hy)
can be made to generate many radically different equilibria
- Infinite variety in function space
+ Does NOT apply to systems with s-varying focusing K, — k,%o

- Can provide a rough guide if we can approximate: /)
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Typical single particle constants of motion:
Transverse Hamiltonian for continuous focusing:

1
H, = 3 X' ’ 4 kﬁoxJ_—I— 52 —— -5 5 ¢ = const

kﬁo = const

+ Not valid for periodic focusing systems!
Angular momentum for systems invariant under azimuthal rotation:

Py = zy’ — yx’ = const

+ Subtle point: This form is really a Canonical Angular Momentum and
applies to solenoidal magnetic focusing when the variables are expressed
in the rotating Larmor frame (i.e., in the “tilde” variables)

- see: S.M. Lund, lectures on Transverse Particle Equations

Axial kinetic energy for systems with no acceleration:

‘ E = (v — 1)mc® = const l

+ Trivial for a coasting beam with 3,3, = const
More on other classes of constraints later ...
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Plasma physics approach to beam physics:
Resolve:

f(XJ_vxlj_’S) = fJ_({Cz}) + 5fJ_(XJ-’X/J_7 S)

S

and carry out equilibrium + stability analysis

equilibrium

perturbation” f) > |5 |

Comments:

+ Attraction is to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature

+ Beams are born off a source and may not be close to an equilibrium condition
- Appropriate single particle constants of the motion unknown for

periodic focusing lattices other than the (unphysical) KV distribution

+ Intense beam self-fields and finite radial extent vastly complicate equilibrium
description and analysis of perturbations
- It is not clear if smooth Vlasov equilibria exist (exact sense) in periodic focusing
- Higher model detail vastly complicates picture!

+ If system can be tuned to more closely resemble a relaxed, equilibrium, one
might expect less deleterious effects based on plasma physics analogies
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S3: The KV Equilibrium Distribution

[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., p. 274 (1959);
and Review: Lund, Kikuchi, and Davidson, PRSTAB, to be published]

Assume a uniform density elliptical beam in a periodic focusing lattice

y A
Blliptical . Line-Charge:
v
A= gn(s)mry(s)ry(s)
number x
density n = const
r_x
Free-space self-field solution within the beam (see: Appendix A) is:
by 132 2
¢ =— 4 + const
2meg | (re +1y)re  (To +1y)ry
dp A T
o S T
v meo (et ry)ra valid only within the beam!
09 A Yy
Cdy  meo (rg + 1)1y
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The particle equations of motion:

q 09
myb 362 my332c2 Oz

g 099
m’yb 362 my332c2 é)y

2+ Ky =

Y+ gy =

become within the beam:

2Q
FoEOnISCRL

2
T 1
Here, Q is the dimensionless perveance defined by:
L
2meomy; B2 c?

x%@+{M@>

')+ {rlo) -

= const

+ Same measure of space-charge intensity used by J.J. Barnard in Intro. Lectures
+ Properties/interpretations of the perveance will be extensively developed in
in this and subsequent lectures
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If we regard the envelope radii 7z, 7y as specified functions of s, then these
equations of motion are Hill's equations familiar from elementary accelerator
physics:

[r2(s) + 1y (8)lra(s)
_ 2Q
[r2(s) + 1y (8)]ry (s)

Suggests Procedure:
+ Calculate Courant-Snyder invariants under assumptions made
+ Construct a distribution function of Courant-Snyder invariants that generates
the uniform density elliptical beam projection assumed
- Nontrivial step: guess and show that it works
Resulting distribution will be an equilibrium that does not evolve in s in 4D
phase-space, but lower-dimensional phase-space projections can evolve in s
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Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied
focusing fields:

z"(s) + k(s)z(s) =0

As a consequence of Floquet's theorem, the solution can be cast in
phase-amplitude form:

x(s) = A;w(s) cos(s)

where w(s) is the periodic amplitude function satisfying

w”(s) + k(s)w(s) —

=0

w(s + L) = w(s)
1 (s) is a phase function given by

¥(s) =wi+/:wf—(§§>

A; and % are constants set by initial conditions at s = s;
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Review (2): The Courant-Snyder invariant of Hill's equation
From this formulation, it follows that
x(s) = A;w(s) cos)(s)

x'(s) = A;w'(s) costp(s) — wf(l;) sin(s)

or

T A; cos

g |

wr' —w'x = A;siny

square and add equations to obtain the Courant-Snyder invariant

2
(E) + (wz’ — w'z)* = A? = const

+ Simplifies interpretation of dynamics
+ Extensively used in accelerator physics
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Phase-amplitude description of particles evolving within a uniform density beam: The KV envelope equations:
Phase-amplitude form of x-orbit equations: initial conditions yield: Define maximum Courant-Snyder invariants:
(s = i) —
2(s) = Agiwz(s) cosz(s) Ay = Conlst Ex = NIaX(Aazci)
Ay ;= =s; = Max(A2, y
xl(s) = Amzw/x (8) COSs wm (3) - b sin 7/11 (3) Q;Z):cz ¢w(s SZ) gy aX( yz) gleléii:ical
N wg () = const These values must correspond to the beam-edge: Ty
where
50 ) r5(8) = VErwy(s) 7
w’(s $)wg(s) — we(8) — =0 = - -
A ) G e T ryls) = Vg () e
The equations for w_and w can then be rescaled to obtain the familiar
We (s + Lyp) = wy(s) wy(8) >0 KV envelope equations for the matched beam envelope
2
° ds " 2Q £
— s _ r,(8) + K (8)re(s) — — =0
wm(s>¢l‘z+/& w%(é) CL‘( ) ﬁ( ) 1'( ) 7";6(5)+Ty(8> rg(s)
e . 20 2
identifies the Courant-Snyder invariant " (s) 4+ K, (87, (8) — S E—
2 YO+ RO T
=z + (wpx’ — wlx)* = A%, = const
Wy T T — Lz — ’I’x(S -+ Lp) = T:c<$> Ty (S) >0
Analogous equations hold for the y-plane Ty(s + Lp) =ry(s) ry(s) >0
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

2
<—> + (wpa’ —wlha)? = A2, = const

2 ’ ’
x rex’ —rle
adl I (e
Tz Ex

f:

» = const

The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution:

A

f1(x1,x)|,8) = ———
( [l ] ) qﬂ_ggmsy

(

X

Ty

)+

rex’ —rlx

Ex

)+

2 ’ ’ 2
ryy —r
(i) +<M) ¢, = const
Ty €y

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear
combination of these Courant-Snyder invariants that generates the correct
uniform density elliptical beam needed for consistency with the assumptions:

fL=—2

- 2
qT2ELEy

d[Cr+Cy —1]

+ Delta function means the sum of the x- and y-invariants is a constant

+ Other forms cannot generate the needed uniform density elliptical
beam projection (see: S9)

+ Density inversion theorem covered later can be used to derive result
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2 ’ ’ 2
T —T
() ()
Ty €y

d(z) = Dirac delta function

This distribution generates (see: proof in Appendix B) the correct uniform density
elliptical beam:

A
n = /deIJ_ fJ_ = { Sﬂrli""y’
)

Obtaining this form consistent with the assumptions, thereby
demonstrating full self-consistency of the KV equilibrium distribution.
- Full 4-D form of the distribution does not evolve in s
- Projections of the distribution can (and generally do!) evolve in s
SM Lund, NE 290H, Spring 2009

z?/r2 +y2/7“5 <1
z?/r2 —0—y2/7‘§ >1
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/[l Comment on notation of integrals:
- 2™ forms useful for systems with azimuthal spatial or annular symmetry

Spatial
o> >
/dQCE‘J_"'E/ d:r/ dy ---
— 0 — 00
oo T
= / drr de - . Cylindrical Coordinates:
0 —n x =rcost
Angular y =rsind
(o] oo
/d%l---z/ dx’/ dy' -
—00 —0o0
Angular

Cylindrical Coordinates:
x' =1 cosd

:/ dm?// g -
0 -7

SM Lund, NE 290H, Spring 2009

y = 1'sin@’
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Use care when interpreting dimensions of symbols in cylindrical form of angular
integrals:

vl # dir - di Va2 +y2  [[r]] = Angle 1’ € [0,00)
S S
0+ Lg— 9 pAreTanfy,a] (0] =rad 0 € [~m,7]
ds ds
2 =1’ cos b [[#']] = Angle z' € (—00,00)
Y =r'sind’ [[y']] = Angle y' € (=00, 00)

+ Tilde is used in angular cylindrical variables to stress that cylindrical variables
are chosen in form to span the correct ranges in x' and y' but are not d/ds of the
usual cylindrical polar coordinates!
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Comment on notation of integrals (continued):
Axisymmetry simplifications

Spatial: for some function f(x2) = f(r?)
o0
/dQZL'J_ f(x?2) = 271'/ drrf(r?)
%
= 7r/ dr® f(r?)
0
o0
= 7r/ dw f(w)
0
Angular: for some function g(x'Z) = g(r’ 2)

27r/ dr’ v g(r” )
=7r/0 dr’ g7
ﬂ/ooodug(u)

/ P, g(x?)

SM Lund, NE 290H, Spring 2009

Cylindrical Coordinates:
x =rcosb

y =rsinf

Angular
Cylindrical Coordinates:

' =1’ cost
y =r'sind’
~2
u=r
/i
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Moments of the KV distribution can be calculated directly from the distribution

to further aid interpretation:

[see: Appendix B for details]

Full 4D average:

Restricted angle average:

<. > :fdzxj_fdz’ fJ_
L= fdQJJLfdQ.TLfL

_ Jew

N (T

Envelope edge radius:
1/2
x = 2<5C2>L/

Envelope edge angle:
= 2aa’) /(2%

rms edge emittance (maximum Courant-Snyder invariant):

2 = A[(2?) L (2"7) L -

(z2")2 Y% = const

Coherent flows (within the beam, zero otherwise):

X
<°T,>X’L =7 —

x
Angular spread (x-temperature, within the beam, zero otherwise):

T, = (' — («

SM Lund, NE 290H, Spring 2009

Yy )y :i 1,1‘_2*3/_2
LEL S op2 rZ 2
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Summary of 1* and 2™ order moments of the KV distribution:

Moment Value
2.0
Jd*a’ 2 fL r:;"—
2
Jd%a' y'fy r’yfyn

Jd2a' "), [’I + o
fszly’ZfL [’yr +

[t wa'fy :i mzn
Jd*' yy'fL %yzn
[y (ay' —ya') fo 0
(@), %
o 3
@ T+t
o Fiik
{wa)s e
(wy')e Lﬁ
{ay’ — ')y 0
16[(2*)1 (")) — (wa')7] <2
16[(y?) L) — (wyhi] g

SM Lund, NE 290H, Spring 2009

All 1 and 2™ order
moments not listed

vanish, i.e.,
/dle xyflL =0
(zy)L =0

see reviews by:

(limit of results presented)
Lund and Bukh, PRSTAB
024801 (2004), Appendix A

S.M. Lund, T. Kikuchi, and

R.C. Davidson, submitted
PRSTAB
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Canonical transformation illustrates KV distribution structure:
[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]

Phase-space transformation:

X = Ve

Tz

X

O
VEx

Courant-Snyder invariants in

X' =

X2 4+ X" = const

do dy = 22 gx dy
E2Ey
de’ dy = Y2V axt gy
T2y

dx dy dx’ dy = dX dY dX' dY’
the presence of beam space-charge are then simply:

and the KV distribution takes the simple, symmetrical form:

fl(x’y7$l7y,7s) fL(X Y

2 2 2 2
XY = 2/\ O{X +X +Y +Y 71]
qTELEy £z Ey

from which the density and other projections can be (see: Appendix B) calculated

more easily:
o n= /dZHZ fi

SM Lund, NE 290H, Spring 2009

by oo 2 2
T (38
qrrary Jo r2  rl
— { q7rr);ry’ 1.2/7.3 +y2/r§ <1

0, xz/r§+y2/r§>l
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KV Envelope equation
The envelope equation reflects low-order force balances
R PR 2Q _ ﬁ -0 Matched Solution:
r v Ty Ty 3o r2(s+ Lp) = 1z(s)
" 2Q) 512; Ty('s + LP) =Ty (5)
Ty + Ryry — ——— — —5 =0
Ty + Ty Ty

: Kz (s + Lp) = Kg(s)
Applied Space-Charge Thermal L) —
Focusing  Defocusing Defocusing Ky (s + Lp) = fiy(s)

Terms: Lattice Perveance  Emittance

Comments:
+ Envelope equation is a projection of the 4D invariant distribution
- Envelope evolution equivalently given by moments of the
4D equilibrium distribution
+ Most important basic design equation for transport lattices with high space-charge
intensity
- Simplest consistent model incorporating applied focusing,
space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design!
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Comments Continued:
+ Beam envelope matching where the beam envelope has the periodicity of the lattice

rz(s + Lp) = 1a(s)
ry(s+ Lp) =1y(s)
will be covered in much more detail in S.M. Lund lectures on Centroid and Envelope
Description of Beams. Envelope matching requires specific choices of initial conditions
72(81), Ty(8i) 7 (i), 7";,(31)

for periodic evolution.
+ Instabilities of envelope equations are well understood and real (to be covered: see S.M.
Lund lectures on Centroid and Envelope Description of Beams)
- Must be avoided for reliable machine operation
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Example Parameters
L,=0.5m, o9=280° n=05
€¢ = €y = 50 mm-mrad

/oo =02

Matching Condition

rz(s+ Lp) = 1z(s)
ry(s+ Lp) = 1y (s)

FODO Quadrupole Focusing
(Q =6.5614 x 107%)

12
Tz
10

Solenoidal Focusing

(Q = 6.6986 x 107)

©
i

Edge Radii 7 and 7, (mm)

0. Tos [ 1 0 0.z ola 0.5 0.8 L
Asial Coordinabe s/, Axial Coordinate s/L,

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
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Some phase-space projections of a matched KV equilibrium beam
in a periodic FODO quadrupole transport lattice

Matched Beam Envelope and Focusing Function

12 Ty
1o
8 Ty
5 .
4 _l—\—‘ —

0 02 ] 08 L
’ i
! |
H i
! I

Envelope Radii (mm)

| 04 | 06

I I
! Axial Coordinate(Lattice Periods)
I I
i

y y ¥ ¥ ¥
X-y
area: T, Ty # const X X X x ®
x" x"
6 £

T Cz

Projection

x-x'
area: e, = const
(CS Invariant)

1

y-y

area: me,, = const
(CS Invariant)
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KV model shows that particle orbits in the presence of space-charge can
be strongly modified — space charge slows the orbit response:

Matched envelope:

20Q g2
7y (8) + kg (8)ra(s) — To(5) + 74 (5) - r3(xs) =0
x Y T
20Q €2
TZ/J/(S) + Ky (s)ry(s) — r2(5) + y(3) - T3(ys) =0
Y
ra(s+ Lp) = 72(5) rz(s) >0
ry(s+ Lp) = ry(s) ry(s) >0
Equation of motion for x-plane “depressed” orbit in the presence of space-charge:
2Q
2
T - =0
A PO RO RO

All particles have the same value of depressed phase advance (similar Eqns in y):

sitly (g
00 = V(s + Lp) — va(ss) = em/ _ds_

L TE(s)
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Contrast: Review, the undepressed particle phase advance calculated in
the lectures on Transverse Particle Equations of Motion

The undepressed phase advance in defined as the phase advance of a particle in
the absence of space-charge (Q = 0):
+Denote by 0, to distinguished from the “depressed” phase advance o,
in the presence of space-charge

Woa + Aator = = =0 wos (5 + Ly) = ws(s)

Oz

sitle (g
00z =/ a3
85 Wiy

i

woe >0

This can be equivalently calculated from the matched envelope with Q = 0:

2
S
2 xT . =
Toz + KzToe — — =0 rox (s + Lp) = roz(s)
Ox
Toz > 0
sitlp Jg Oz
00z = Ex/ 2
ER Tox

+ Value of €z is arbitrary (answer for 0o is independent)
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Depressed particle x-plane orbits within a matched KV beam in a periodic
FODO quadrupole channel for the matched beams previously shown
Solenoidal Focusing (Larmor frame orbit):
Undepressed (Red) and Depressed (Black) Particle Orbits
0.02

meters

-0.01f
—o o UL L L r Ly

00 25 5 175 o 125 15 175 20

FODO Quadrupole Focusing:L-attice Periods
Undepressed (Red) and Depressed (Black) Particle Orbits
0.02

meters

Ko

00 25 5 7.5 10 125 15 175 20
Lattice Periods

SM Lund, NE 290H, Spring 2009 Transverse Equilibrium Distributions 39

0.01¢ x-plane orbit:

0.01 x-plane orbit:
0 /
~0.01 : A :‘\’V‘/': y ) v=0=y

Depressed particle phase advance provides a convenient
measure of space-charge strength

For simplicity take (plane symmetry in average focusing and emittance)
00z = Ooy = 00 Ex =Ey =€

Depressed phase advance of particles moving within a matched beam envelope:

sitle (g sitle (g
oc=¢ =5
/s rz(s) /s ry(s)

lim o = o9
Q—0
Normalized space charge strength Cold Beam
0/ o9 — 0 (space-charge dominated)
e—0

0<o/op <1

Warm Beam

(kinetic dominated)
Q—0

ofog — 1
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For example matched envelope presented earlier:
Undepressed phase advance: o, = 80° .
Depressed  phase advance: ¢ =16° — o/0g = 0.2 225

Periods for
360 degree
phase advance

repeat periods

Solenoidal Focusing (Larmor frame orbit):
Undepressed (Red) and Depressed (Black) Particle Orbits

0.02
g 00L; x-plane
TE; 0F orbit
-0.01f y=0=y'
—p o L L o LTy
Kz
0.0 25 5 75 10 125 15 175 20
- _ Lattice Periods
4.5 periods
b 22.5 periods :
Comment:

All particles in the distribution will, of course, always move in response to both applied
and self-fields. You cannot turn off space-charge for an undepressed orbit. Itis a
convenient conceptual construction to help understand focusing properties.
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The rms equivalent beam model helps interpret general beam evolution in
terms of an “equivalent” local KV distribution
Real beams distributions in the lab will not be KV form. But the KV model can
be applied to interpret arbitrary distributions via the concept of rms equivalence.
For the same focusing lattice, replace any beam charge p(x,y) density by a
uniform density KV beam of the same species (¢, ) and energy (3, ) in each
axial slice (s) using averages calculated from the actual “real” beam distribution
with: _fd2$Lfd2$/J_ e f
(L= [z, [ f1

rms equivalent beam (identical 1st and 2nd order moments):

f1 = real distribution

J_<:U/2>J_ _ (xm’)L]l/Q
LWL — ) )?

Quantity KV Equiv. Calculated from Distribution
Perveance Q =q° [dPz) [d*)| f1 [[2meoviBic?)
z-Env Rad 7y = 2(1;2)112
y-Env Rad = 2<y2)i/2
z-Env Angle 1/, = 2(zxz’) /<x2>i/2
y-Env Angle 1, = 2(yy') 1 /(W2) )

[

[

2
2
z-Emittance e, =4
y-Emittance e =4
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Comments on rms equivalent beam concept:

+ The emittances will generally evolve in s
- Means that the equivalence must be recalculated in every slice as the
emittances evolve
- For reasons to be analyzed later (see S.M. Lund lectures on
Kinetic Stability of Beams), this evolution is often small
+ Concept is highly useful
- KV equilibrium properties well understood and are approximately correct
to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008)
for a detailed discussion of rms equivalence
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Sacherer expanded the concept of rms equivalency by showing that the
equivalency works exactly for beams with elliptic symmetry space-charge
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

(x2 y2 Based on:
p=r —2+—2) 9y A 1=
= Ty <$0$>i © dmegry + 1y
the KV envelope equations see J.J. Barnard intro. lectures
20 €2(s)
r7(8) + ke (8)re(s) — PR OFTIO) — rg(s) =0
z Y x
2Q =y (s)
i Y
—_ _ =0
Ty (8) + ky(s)ry(s) T2(5) + 14(5) Tg(s)

remain valid when (averages taken with the full distribution):

A
q )\:q/deLp:const

Q = ———5—=— = const
er = 4[(2?) L (&%) L — (za’)]]"/?

2meqmy; BEc?
1/2
re = 2(2?) J_/
2\1/2 2 2 211/2
ry =2(y7) " ey = 4" 1)L — (W)Y
The emittances must, in general, evolve in s under this model
(see SM Lund lectures on Transverse Kinetic Stability)
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Interpretation of the dimensionless perveance Q

The dimensionless perveance:

gA . A = ghamr,ry = line-charge = const
5— = cons

- 2meomy BEc? fi = beam density

+ Scales with size of beam ( A ), but typically has small characteristic values
even for beams with high space charge intensity ( ~ 10 *to 10®* common)

+ Even small values of Q can matter depending on the relative strength of other
effects from applied focusing forces, thermal defocusing, etc.

Can be expressed equivalently in several ways:

2reomApBEc?  2meompB3c®  (WBe)? Ia
I, = A\Byc = beam current
2 . A2
_ ey WpleTy I4 = 4megmc® /g = Alfven current
2reomApBcd 23 BEc?

Wp = \/¢*>n/(meg) = plasma freq.

+ Forms based on A, Iy generalize to nonuniform density beams
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To better understand the perveance Q, consider a round, uniform density beam with
T =Ty =Ty
then the solution for the potential within the beam reduces:

A $2 y2
¢ =— + const
2meq | (1o +1y)1re (ra +ry)ry
A + t
= ———— +cons
4d7eg Tf
A for potential drop

= AP =9(r=0)—o(r=m)=

If the beam is also nonrelativistic, then the axial kinetic energy £ is

4dmeq across the beam

1
E = (y — 1)mc® =~ §mﬂgcz
and the perveance can be alternatively expressed as

_ gA L 4A¢
2reomp BEc? T &

+ Perveance can be interpreted as space-charge potential energy difference
across beam relative to the axial kinetic energy
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Further comments on the KV equilibrium: Distribution Structure

KV equilibrium distribution:

f1 ~ d[Courant-Snyder invariants]

Forms a highly singular hyper-shell in 4D phase-space
/

fae X
Schematic: > - 4D singular hyper-shell surface

X1

+ Singular distribution has large “Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important
(see: lectures by S.M. Lund on Centroid and Envelope Descriptions of Beams)
+ Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects
due to (delta-function) structure of distribution and must be applied
with care (see: lectures by S.M. Lund on Kinetic Stability of Beams)
- Instabilities can cause problems if the KV distribution is employed
as an initial beam state in self-consistent simulations
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Preview: lecture on Centroid and Envelope Descriptions of Beams:
Instability bands of the KV envelope equation are well understood in
periodic focusing channels and must be avoided in machine operation

Envelope Mode Instability Growth Rates
Solenoid (17_=0.25) Quadrupole FODO (7 =0.70)

1.0 T 1.0 T
! ln|’yi | 0.5 :
0.8 | 0.8 :
Y-
06 Lattice 0.6
L
Y
O 04 * 0.4
Lattice
02| Res. 0.2
Band !
0.0 ; ! 0.0
100 120 140 160 180 100 120 140 160 180

oy (deg/period) O¢ (deg/period)
[S.M. Lund and B. Bukh, PRSTAB 7 024801 (2004)]
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses

+ Not very different from what is often observed in experimental measurements and
self-consistent simulations of stable beams with strong space-charge
+ Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge

Jde! rdy fo Tdysdy fi
2

Area we;

Jdridy f1
¥
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Further comments on the KV equilibrium:
Angular Spreads: Coherent and Incoherent

Angular spreads within the beam:

Coherent (flow):

Incoherent (temperature):

2
@ = LEBATL 2 agr = 25 (15 - 1)
= = ” -
*L Jd%a' o “ry ’ 2r2 r2 2
@)y £
4 2r2
'rll' 777777777777 i
—Tz 3
3 Ty X
3 y="0
D - —rh
z
y=0

+ Coherent flow required for periodic focusing to conserve charge

+ Temperature must be zero at the beam edge since the distribution edge is sharp

+ Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid
model interpretation of the (kinetic) KV distribution
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Further comments on the KV equilibrium:

The KV distribution is the only exact equilibrium distribution formed from
Courant-Snyder invariants of linear forces valid for periodic focusing channels:
+Low order properties of the distribution are physically appealing
+[llustrates relevant Courant-Snyder invariants in simple form
- Later arguments demonstrate that these invariants should be a reasonable
approximation for beams with strong space charge
+KYV distribution does not have a 3D generalization [see F. Sacherer, Ph.d. thesis, 1968]
Strong Vlasov instabilities associated with the KV model render the distribution
inappropriate for use in evaluating machines at high levels of detail:
+Instabilities are not all physical and render interpretation of results difficult
- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):
Can a valid Vlasov equilibrium be constructed for a smooth (non-singular),
nonuniform density distribution in a linear, periodic focusing channel?
+Not clear what invariants can be used or if any can exist
- Nonexistence proof would also be significant
+Lack of a smooth equilibrium does not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would
be more physically appealing than the KV distribution we will examine smooth
distributions in the idealized continuous focusing limit (after an analysis of the
continuous limit of the KV theory):

+ Allows more classic “plasma physics” like analysis

+Illuminates physics of intense space charge

+Lack of continuous focusing in the laboratory will prevent over generalization
of results obtained

A 1D analog to the KV distribution called the “Neuffer Distribution” is useful in
longitudinal physics
+Based on linear forces with a “g-factor” model

+Distribution is not singular in 1D
+See: J.J. Barnard, lectures on Longitudinal Physics
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Appendix A: Self-Fields of a Uniform Density Elliptical Beam
in Free-Space

1) Direct Proof:
The solution to the 2D Poisson equation:
e g2 2
(82 +82>¢_ _ﬂ'EOi\‘F’”V’ lf%+%<1
oz~ Oy? 0, if 2+ %> 1
x y
0 A
lim —¢ ~
r—oo Or  2megr

has been formally constructed as:

* Solutions date from early Newtonian gravitational field solutions of stars with ellipsoidal density
+ See Landau and Lifshitz, Classical Theory of Fields for a simple presentation

A /5 ds +/°° ds <x2+y2>
o |Jo \Joz+s)024s) S\ Jerrs)zs) \TatS Tt

+ const
£=0 when 2°/r +y°/r2 <1
2 2 2 2
r Y T Y
root off ——+ ——— =1, when -+ = >1
¢ r2HE r24E r2 o2 Al
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We will A) demonstrate that this solution works and then B) simplify the result.
A) Verify by direct substitution:

2z
= e {/ (r2 + 5) r2+s) <r§+s>
_ ! {1_ a2 ]%
(24 8)(r2 + ) R I 3

But: 2 5
ife=0 = 1=

"2 2 .
- S i In either case the 2™ term

if €=0 = (‘j_f —0 above vanishes
XL

x
8T N 271'50/ r2 +s) r2+s) (ri—i—s)

Giving:

27r60/ \/(r2+9 )(r2 + 5) <7 +s>

Differentiate again and apply the chain rule:

A2
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()= ma | T (r )
Ox? 8y T 27e (2 +5)(r2 + ) r2+s  rids

1 {z&f/@r N y@f/@y]
(12 +8)(r2+5) LT2HE TP HE

Must show that the right hand side reduces to the required elliptical form for a
uniform density beam for:

Case 1: Exterior

2
Case 1: Exterior a:_2 + y_2 >1
Ty Ty
2 2
. . x Yy
Differentiate: + =1
2+E ri+¢
193 2x 1

=

+ analogous eqn in y
wrher + wiher } A3
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%:wzw[
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Using these results:

x0€/0x  ydE Oy [ 22 N y? 1 _y
r2 + r2 + - r2 + 2 r2 + 2 2 2 -
Also, need to calculate integrals like: w? =12+ €

_ [ 3 L
L©= [ R I

+ analogous integrals in y

/°o dw
TR

This integral can be done using tables or symbolic programs like Mathematica:

() = 2w . 2 2\/T5+§

= +
(rz —rj)y/ra—ry +w?| e 2=y (2 —rpVri+¢
Applying this integral and the analogous Iy (§)

1 1
/ T2+3(r2+s) {T%+s+r5+s} = L(§) + 1,(¢)

2 VETE Ve 2
mon e ViEEE) i+ o03+9Ad

Transverse Equilibrium Distributions 56

SM Lund, NE 290H, Spring 2009




Applying both of these results, we obtain:

(8_2 + 8_2) d) — _L 2 — 2
ba® " o o | \Joroes o 023+

=0 Thereby verifying the exterior case !
2 g2
Case 2: Interior +5 < 1
r
y

2
x

v0¢/0x  yoE/dy

=0 =
. e T Zte

0

The integrals defined and calculated above give in this case:

2 2
Iz(fzo)Zm Iy(fzo)Zm

Applying both of these results, we obtain:

0? 0? A 2 A M
ox dy 2meg | oy €QTT 3Ty €0

Thereby verifying the interior case ! A5
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Verify that the correct large-r limit of the potential is obtained outside the beam:

6 A , 11
“or ~ are e ® L@ =z=n

96 A\ r large = & large N )
oy = —271_6011[74(5) rlgrolo]y(f) = ¢ =2

Thul?: 9 Az

rote Or 2meq 2 . 0 A

fim _9% _ Ay rooe Or | 2meor

r—oo Oy 2meq 2

Thereby verifying the exterior limit!

Together, these results fully verify that the integral solution satisfies the Poisson
equation describing a uniform density elliptical beam in free space

A6
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Finally, it is useful to apply the steps in the verification to derive a simplified
formula for the potential within the beam where:

22 y?
7"_2 + ’f'_2 <1, f =0
x y
This gives:
A
¢=- {93211(5 =0)+y°L, (¢ = 0)} + const
4meg

A { 222 292 }
=— + + const
dmeg | ra(re +1ry)  ry(ra +1y)

/\2 2
¢={$+y

B 2reg | ra(re +1ry)  ry(re +1y)

} —+ const

+ This formula agrees with the simple case of an axisymmetric beam with
Ty =Ty =T}
- Discussed further in a simple homework problem

A7
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2) Indirect Proof:
+ More efficient method
+ Steps useful for other constructions including moment calculations
- See: J.J. Barnard, Introductory Lectures

Density has elliptical symmetry:

2 2
—n(E LY
n(x7y) _n<’l"2 + rQ)

© Yy
The solution to the 2D Poisson equation:

0? 0?2 qn
(o a2) o= %

in free-space is then given by

function n(argument) arbitrary

qrar n(x) 2 2
gb:—#/ de X= ;U + 2y
€ Jo VT2 A& 12+ € rz+& oy +E

where 7(x) is a function defined such that

dn(x)
n(z,y) = “dv

X le=0
+ Can show that a choice of 7] realizable for any elliptical symmetry n A8

SM Lund, NE 290H, Spring 2009 Transverse Equilibrium Distributions 60




Prove that the solution is valid by direct substitution Apply partial 1ntegrat10n

o 2 o2x 2 %0 L i (&)
22 Y2 or  r24¢ w_ri—l—f - 0 d£\/2_+£ 2_,_5__4 0 d /12 & /r2 +¢
XTEvetere T ooy 92 2 SR v
: 3 9x _ oX _ S 90 >~ dnd 1
By 2 +E 9 " EiE R 3 e — +4/ de Lo —
0 dg VT2 +Er2+¢€ 0 dxdfx/ri—i-f r24¢

Substitute in Poisson's equation, use the chain rule, and apply results above:

2 2 §—o0 d
<382 a>¢_ _ Q/OOd _71<2+5+2+5>
x =— _
d? 42> 4y° d 2 2 \/r2 2 0 /r2 + 2 4
-2y [ e () (e + witer) + (B) (e + ) VT, eyt
deo Jo r2+&y/r5+§ in first term, upper limit vanishes since denominator ~ £ — oo
Note:
22 y? 4 dn o r2+5 + r2+§) Term cancels
dx =— |73 5+ 73 d¢ = - - d§ nd ;
(rz +8)?*  (r] +§) Tary dX|e_g /1"2 /1"2 2" integral
Giving:
Using this result the first integral becomes: g ) )
2 : 0 0 rery 4 dn(x) q
. ) (42 Ay dn? dx = 4+ =gy = TN =4
/°°d5 (dXQ) ((TH&)"’ + (T3+§)2) _ 44/00 _ DrdE 52 o2 ¢ deo Tary X |emg €0 (9)
0 /2 2 0 /12 4+ 2 4 =
2+ V' +¢ "z \/ "y A9 Which verifies the ansatz. dn(x)/dxle=o = n(z,y) AlO
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For a uniform density ellipse, we take: Then:
) A x, ifx<1 dn(x) ﬁ, ifxy<1 qraTy /'°°d A z? N y?
nix qrrery |1, ifyx > 1 dx 0, ify > 1 deo  Jo qrrary | (P2 P22+ 62 T (12 4 €)12(12 + £)3/2
Then Using Mathematica or integral tables
A : A : 2 2
dn(x) _ ) gmrary if xle=o < 1 B et if 2% /rs +y%/ry <1 /Ood§ 1 _ 2
dx £=0 0, if x|e=o >1 0, ifo/ri—i—yz/ri > 1 0 (T%"‘f)?’/z(?"@%"‘f)lﬂ r2(Te +1y)
Therefore, for this choice of / de 1 _ 2
d . . o r2 1/2(y2 3/2 ry(ry +r
%‘ = n(z,y) for a uniform density elliptical beam ? (rz + 820y +¢) y(re 1)
X le=0 with radii r;, ry and density A/(qmr,ry) Showing that:
Apply these results to calculate by 22 y?
- 0 ¢ =— { + + const
¢:_q z y/ 2meg |1e(re +1y)  ry(re +1y)
deo Jo /rZ ¥ / 2 |
Tz "y since an overall constant can always be added to the potential (the integral had a
x? y? y reference choice ¢p(z = y = 0) = 0 built in.
= + PR Z_
X e 2te = lfr + <1, then
z y
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The steps introduced in this proof can also be simply extended to show that
+ For steps, see J.J. Barnard, Introductory Lectures

@, = 2T
9z’ T dmegre + 1y re = (22)Y/?
A= q/deJ_ n v +
W2y, =2 ry = W)
oy ATeq Ty + Ty v +

for any elliptic symmetry density profile

Appendix B: Canonical Transformation of the KV Distribution

The single-particle equations of motion:

i - 2Q 2(s) —
““ﬁ*{““)[m@wruﬂmwﬁ () =0

(s Kol(s) — 2Q s) =
y(>+{3‘) VA@+m@mu@}“) 0

can be derived from the Hamiltonian:

22 y?
n(z,y) = func <_2 + —2> ; 1 2Q x2
r T H » I y Y3 =3 x P
=T LT =58 K ) o] 2
In the introductory lectures, these results were applied to show that the KV 1, 20 2
envelope equations with evolving emittances can be applied to elliptic symmetry +oy’+ {“y(s) + } v
envele 2 POl () + 1,1 2
+ Result first shown by Sacherer, IEEE Trans. Nuc. Sci. 18, 1105 (1971) .
using:
d__oH d OH .
—_ — —x' =_
ds + ox/| ds + 0x,
Al3 B1
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Perform a canonical transform to new variables X,Y, X',Y' using the generating The structure of the canonical transform results in transformed equations of
function motion in proper canonical form:
N OF, L
T 1 1 H =H, +—- H =H (X,)Y,X'Y';s
Fy(z,y, X', Y) = — | X' + Zaw!, + 2L Y + syw, + LT 9s + (XY, XV s)
Wy 2 Wy 2
- 1 1 1 1
Then we have from Canonical Transform theory (see: Goldstein, Classical H= 2—2X 24 2—2Y’ 24 2—2X 24 2—2Y2
Mechanics, 2™ Edition, 1980) Wz Wy Wz Wy
X=g2oL OB L) dy OM X dy, 9l X
gi{ Wo ;Fff v ds* 90X’ w2 ds 0X w2
Y:a—yizwi y =57 = — (Y +yuw)) d., OH, Y d,, 0H, Y
o v oot ds” ~ oY w3 ds° ~ o w2
which give
d
Transform Inverse Transform + Caution: X' merely denotes the conjugate variable to X : — X #£ X’
+ X and X' both have dimensions (meters)*(1/2) ds
X =z / Wy X' =wya’ — fvw; T =wy X =X’ /wz + w; X + Equations of motion can be verified directly from transform equations (see
Y =y/w Y =w,y —yw! —w.Y "yt % problem sets) i
y/wy vy Yy y Y Y / Wy + Wy + Transformed Hamiltonian H |is explicitly s dependent due to w_x and w_y
B2 lattice functions B3
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Following Davidson (Physics of Nonneutral Plasmas), the equations of motion

d,, 1 d ., X
- Y = = x =
dsX + %X 0 ds w?

d Y
iyq_iyzo _Y/:__2
ds 5 ds w;

have a psudo-harmonic oscillator solution

X (s) = Xicosz(s) + X sin),(s)

V(s) =

set by initial conditions

/S ds X; = const
S

L w2(3) X! = const

This explicitly verifies the simple, symmetrical form of the Courant-Snyder
invariants in the transformed variables:

2
X2 4 X"? = <i> + (wea — aw,)” = const
Wy

2
Y24+Y"? = <i> + (wyy' — yw;)2 = const
Wy B4
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The canonical transforms render the KV distribution much simpler to express.
First examine how phase-space areas transform:

drdy = wyw,dXdY
dx'dy’
Wy Wy

- dxdydx'dy’ = dXdYdX'dY’
dx'dy’ =

+ The property dx dy dx' dy' = dX dY dX' dY' is a consequence of canonical
transforms preserving phase-space area

Because phase space area is conserved, the distribution in transformed phase-
space variables is identical to the original distribution. Therefore, for the KV
distribution

A z\° re’ — i\’ 2 ryy =1y
N NORCE
qm2e ey T Ex Ty ey

by X2 +X/2 Y2 +Y/2
q7‘[‘2€$€y6 |: '{" - 1:| Tz = 4 /5‘1,11}z

€ Ey

+ Transformed form simpler and more symmetrical

+ Exploited to simplify calculation of distribution moments and projections B5
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Density Calculation:
As a first example application of the canonical transform, prove that the density
projection of the KV distribution is a uniform density ellipse. Doing so will prove
the consistency of the KV equilibrium:
+ If density projection is as assumed then the Courant-Snyder invariants are valid
+» Steps used can be applied to calculate other moments/projections
*» Steps can be applied to continuous focusing without using the transformations

dx'dy’
n(x,y) = /dx’dy/ fL= /*h

WrWy

Us = X'/ /e av,au, = XA
U, =Y/ Vo=

Ty = V/Ex Wy
Ty = \/EyWy

X2 y?
n:%/dUszyé[UﬁJrUj—(1————)}

qmeTeTy

B6
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Exploit the cylindrical symmetry

d 2

Ul =U+U; dU,dU, = dpU  dU, = dyp gl
A T > dU? 9 N TE
B — = 1 -= - =
e = o [Cav [T s |ut bon

giving

A e8] 1,2 y2
= dUt 6 |U? — (1 -5 - %
o) = [ 9[- (-5 )

B —qﬂr).\nm =n, ifx?/r +y2/r§ <1
0, if 22 /r2 + 92 /r2 > 1

Shows that the singular KV distribution yields the required uniform density

elliptical projection required for self-consistency! ¥

Note: Line Charge: A = const . "
A :

Area Ellipse = 71,1y B7
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'f),:

qrreTy
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/I Aside

An interesting footnote to this Appendix is that an infinity of canonical
generating functions can be applied to transform the KV distribution in
standard quadratic form

fiL~O0[X24+X?4+Y2+Y"? — const]

to other sets of variables. These distributions have underlying KV form.
» Not logical to label transformed KV distributions as “new” but this has been
done in the literature
- Could generate an infinity of KV like equilibria in this manner
+ Identifying specific transforms with physical relevance can be useful even if
the canonical structure of the distribution is still KV
- Helps identify basic design criteria with envelope consistency
equations etc.
- Example of this is a self-consistent KV distribution formulated for

quadrupole skew coupling
/1

B8
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S4: Continuous Focusing limit of the KV Equilibrium Distribution

Continuous focusing, axisymmetric beam

Ka(8) = ky(s) = k%o = const Undepressed betatron wavenumber

Ex=Ey=E€

Ty =Ty =Tp

KV envelope equation

2 g2
L Q@ - =0
Tz + Ty [
2
2 €
Ty RyTy — @ —= =0
e+ Ty Ty
immediately reduces to:
2
1" 2 Q €
ry +kzotp — — — = =0
b B0To Ty Tl::’
with solution
5 1/2
Q + \/4kjee? + Q2
= ——s = const

2%,
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Similarly, the particle equations of motion within the beam are:

reduce to
0 Depressed
x| + k%XJ_ =0 kg = kg’o — -5 = const betatron
Ty wavenumber

with solution

!
x1(s) = xy;coslkg(s — s;)] + );:J_i
B

sin[kg(s — si)]

Space-charge tune depression (rate of phase advance same everywhere, L arb.)
1/2 o ’
k,g (o Q 0 < — < 1
==\l 3 %0
kgo o0 k50T e—0 Q-0
2 .2
= kpory = Q
envelope equation
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Continuous Focusing KV Equilibrium —
Undepressed and depressed particle orbits in the x-plane

g
kﬁz—kﬁo i20.2 y:():y/
go 0o
CU(S) Particle Orbits in Beam
A envelope
" M / undepressed
N4 N4 >
depressed

Much simpler in details than the periodic focusing case,
but qualitatively similar in that space-charge “depresses” the
rate of particle phase advance
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Continuous Focusing KV Beam — Equilibrium Distribution Form

Using )
A = gmiry n = const  density within the beam
for the beam line charge and
0
0(const - ) = 9()
const

the full elliptic beam KV distribution can be expressed as :
+ See next slide for steps involved in the form reduction

A z\’ rex’ — iz’ 2 ryy =y 2
fJ_ - 2—5 (_) + (l—l) + (2) + (y—y> -1
qmegey Ty £p Ty £y

n
= %(5(HJ_ —Hyy)

/Il Aside: Steps of derivation
Using: _

fr =&y =¢ A\ = qriary = const
Ty =Ty = Tp = const

A x 2 TI/*’!‘,I 2 2 T‘y’—T”y 2
fJ_:Z— <_) +(1737) +(£> +(U7y) -1

qmlezey Ty €z Ty Ey

A2 2 2 2,./2 2,12

nr T riz r

== (—2+y—z+ - —1)
e Tb T'b 153
Using

o(x

d(const - x) = (z)
const

where 1 g2 I
H| = x?4+ - %2 -- Hamiltonian
LT T gt :
b (on-axis value 0 ref) The solution for the potential for the uniform density beam inside the beam is:
_ lx'Q + 1 k2 x2 + q¢
XL T RaoXL T L sgr 10 0¢ A A 2
——r—=— ¢ = ———5X7 + const
2 2 4 2
€ rdr Or meor;, TEQT},
H = 52 = const -- Hamiltonian at beam edge
b
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The Hamiltonian becomes: o o
1 1 Equilibrium distribution 9
H, — 2 k2 x2 q¢ €
J.—EXL“‘g BoX1 + 32322 = H,, = — = const
m;, Bye n 2r?
1 1 5 \ fL(HL) = ﬁé(HJ__HJ_b) R b
=-xXT + skjox] — ——5-55X1 + const Q= o 7 = const
202 Amm; e 2meomy; B c? then it is straightforward to explicitly calculate (see h k probl
1 ) 0 en it is straightforward to explicitly calculate (see homework problems)
=-xT + -kjox] — =5x] + const = const A 0<r<r
22 2r . Density: n= /d%c’l fi= { U= b
From the equilibrium envelope equation: 0, mp<r
Q 19 2 f d22 ? = 2, o
k2= X 4 LT = 22J0°2, T fJ_: Tp(1—r?/ry), 0<r<m
380 2 Temperature: Tz = vomBjc NI 0. <7
The Hamiltonian reduces to:
5 .
" - 1 X2t 5_4 X3 + const ) Density e Temperature
2 27 I 7 YomBEcie?
with edge value (turning point with zero angle): X 7 T2
2 n | T
€ ] =Ty(r=20
H,, = 52 + const ' ( )
T} !
Giving (constants are same in Hamiltonian and edge value and subtract out):
n. (1 2 2 n > >
fr=5-6 (gx'f + 2_4X3_ - F) =50 (HL — Hy)
i " " i " T r To r
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Continuous Focusing KV Beam — Comments

For continuous focusing, H | is a single particle constant of the motion (see
problem sets), so it is not surprising that the KV equilibrium form reduces to a
delta function form of f, (H,)

# Because of the delta-function distribution form, all particles in the continuous
focusing KV beam have the same transverse energy with H1 = H 1 = const

Several textbook treatments of the KV distribution derive continuous focusing
versions and then just write down (if at all) the periodic focusing version based on
Courant-Snyder invariants. This can create a false impression that the KV
distribution is a Hamiltonian-type invariant in the general form.

+ For non-continuous focusing channels there is no simple relation between
Courant-Snyder type invariants and H |
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S5: Stationary Equilibrium Distributions in Continuous Focusing Channels
Take

Kz(8) = Ky(s) = k%o = const

+ Real transport channels have s-varying focusing functions
# For a rough correspondence to physical lattices take: kgo = 0¢/Ly

A valid family of equilibria can be constructed for any choice of function:

1 1 q¢
— H > O H —— 2 _k2 2
fo=fi(H)> L= XL gLt s

¢ must be calculated consistently from the (generally nonlinear) Poisson equation:

02 02 q

—t = |o=—— [d* H
(3$2 + 0y2) ¢ €0 / x| fu(HL)
+ Solutions generated will be steady-state (8 / 0s = ())

+When f; = f1(H1), the Poisson equation only has axisymmetric solutions with
0/00 = 0 [see: Lund, PRSTAB 10, 064203 (2007)]

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous
focusing (see: Transverse Particle Equations). In periodic focusing channels
kz(s) and Ky () vary in s and the Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

10 (00 _ _an _ 4 [p
ror (T8r>_ € eo/d =y fL(Hy)

For notational convenience, introduce an effective (add applied component and
rescale) potential defined by

1 q9
=k2 24 2T — /2 2
() B soT +m7§’ﬂ§62 r e +y
then
1
leix'f—i—d)

and system axisymmetry can be exploited to calculate the beam density
(see earlier aside slides on integral symmetries for steps) as:

n(r):/dzxi fL(HL) —27r/1:odHL fL(HL)

The Poisson equation can then be expressed in terms of the stream function as:

10 ([ o 9 27q? /°°
——r= ) =2k — —————= dH H
r Or <T or > p0 meov; B2 c? W) + fu(HL)
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To characterize a choice of equilibrium function fL(HL), the (transformed)
Poisson equation must be solved

+ Equation is, in general, highly nonlinear rendering the procedure difficult

Some general features of equilibria can still be understood:

+ Apply rms equivalent beam picture and interpret in terms of moments
# Calculate equilibria for a few types of very different functions to understand the
likely range of characteristics
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Moment properties of continuous focusing equilibrium distributions

Equilibria with any valid equilibrium fL(HL) satisfy the
rms equivalent beam matched beam envelope equation:
Q

2
£
2
kgoro — = — 5 =0
T, Th

# Describes average radial force balance of particles
# Uses the result (see J.J. Barnard, Intro. Lectures): (z0¢/0z) = —A/(8mep)
where

A
i st A=a [y [ £
b~b
dr 3 [CdH | fi(H,
rg =2(r?) = o f¢ 1)

© JySdrr [dHL fi(H))
Joldrr [dH L (Hy — ) fL(HL)
2 _ 2\ __ o,2 Y
e = 2rb<XJ_>J- - 27‘b fooodr’rfgodHJ_ fJ_(HJ_)
de.T_L fd2$ﬁ_ fJ_(HJ_)
JdPzy [d*a fi(HL)
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(o) =

SM Lund, NE 290H, Spring 2009

Parameters used to define the equilibrium function
fi(Hy)
should be cast in terms of
Q, &, 1
for use in accelerator applications. The rms equivalent beam equations can be

used to carry out needed parameter eliminations. Such eliminations can be highly
nontrivial due to the nonlinear form of the equations.

A kinetic temperature can also be calculated
- Pxy - f1
X fd2 mﬁ_ f |

T, = (")

L

W) = 3 [ 2 =2 AL (L 07

which is also related to the emittance,

o [d?z, nT, 22 = 16(22) | (22
(x >l_7fd2xm (z%) L(2")

SM Lund, NE 290H, Spring 2009

o Jd?z nT
1= 47’b 7fd2xL n
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Choices of continuous focusing equilibrium distributions:

Common choices for f, (H ) analyzed in the literature:
1) KV (already covered)

fL o< o(HL — Hyyp)

H |, = const

fu

2) Waterbag (to be covered) e =
[see M. Reiser, Charged Particle Beams, (1994, 2008)]

|floc®(HLb—HL)|
0, <0

3) Thermal (to be covered)
[see M. Reiser; Davidson, Noneutral Plasmas, 1990]

fLoxexp(—HL/T)

T = const > 0 L e,
Infinity of choices can be made for an infinity of papers! T o

+ Fortunately, range of behavior can be understood with a few reasonable choices
SM Lund, NE 290H, Spring 2009
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Preview of what we will find: When relative space-charge is strong, all

smooth equilibrium distributions expected to look similar

Constant charge and focusing: Q = 1074

Vary relative space-charge strength: /oo
Waterbag Distribution

k%o = const
=0.1,02,---,09

Thermal Distribution

Iu
Ju
fLx©OHL,—Hy) f1 ocexp(—HL/T)
H H T I
0 ofoy = 0.1 ¥ W o/og=0.1
w08

0.8 Y /

0.6 g 00

0.4 — 04
2 ES -
2 0.2 - Z 02t 09
a N o/op = 0.9 2 /70

0 0005 001 0015 002 0025 003

0 0005 001 0015 002 0025 0.03
) l.?adiu.s. I\"?‘,r ) ) _ Radius, kgor
Edge shape varies with distribution choice, but cores similar when ¢ /oo small
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:

[Reiser, Theory and Design of Charged Par:
and Review: Lund, Kikuchi, and Davidson,

Waterbag distribution:

ticle Beams, Wiley (1994, 2008);
PRSTAB, to be published (2008)]

fL(HL) = fo©(Hp, — Hy)

1, z>0
9(5”):{ 0, <0

fo = const

H}p, = const Edge Hamiltonian

The physical edge radius 7. of the beam will be related to the edge Hamiltonian:

H_L|r:r“ == Hb

Note (generally):

Te £ Tp = 2(m2>j_/2

Te > Tp

Using previous formulas the equilibrium density can then be calculated as:

Hy =x7/2+9 1/’:’“%’0’"2/”#2%2
bMb
n(r) = / d*zy ff?”f‘){ oLt

SM Lund, NE 290H, Spring 2009
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The Poisson equation of the equilibrium can be expressed
within the beam (7 < 7¢) as:

10 ([ o
e QE) 20 = k% — K2H)

L —
eomy; By c?

k

(=1}

This is a modified Bessel function equation and the solution within the beam
regular at the origin r = 0 and satisfying ¢ (r = r.) = H}, is given by

W) = Hy — 2720 {LM}

where I;(x) is a modified Bessel function of order ¢
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The density is then expressible within the beam (7 < 7¢) as:

k3 Io(kor)
— 20 |1 _ Zo\ro
n(r) = 4z fo 12 [1 IO(kOTe):|
. 260"”’735%02]{%0 |:1 _ I(](k(ﬂ‘) :|
q? Io(kore)

Similarly, the local beam temperature within the beam can be calculated as:

a2 _ kéo
L) = (), = 22 1
0

x n(r)

_M}

Io(kore)

The proportionality between the temperature T_x(r) and the density n(r) is a
consequence of the waterbag equilibrium distribution choice and is not a general

feature of continuous focusing.

SM Lund, NE 290H, Spring 2009
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The waterbag distribution expression can now be expressed as:

: k3 Io(k 1,

+ The edge Hamiltonian value Hj has been eliminated
* Parameters are:

fo .... distribution normalization
kOTe

kgo/ko

.... scaled edge radius

.... scaled focusing strength

Parameters preferred for accelerator applications:

kﬁOa Qa

Needed constraints to eliminate parameters in terms of our preferred set will now
be derived.

Ex = Ey = &b
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Parameters constraints for the waterbag equilibrium beam

First calculate the beam line-charge:

Koo o[, 2 Iikore)
]CQ k’o?"e I()(k‘o’r‘e)

A= 27rq/ “dr rn(r) = 4n’qfo—oo 1>
0 0

Te k2 I (]C r )
N =29 d — 4n2q f, P02 2\%0Te)
7rq/0 r rn(r) 7°qfo 12 s Totkors)

here we have employed the modified Bessel function identities ( ¢ integer):

%[xffe(x)] — 'L (a),

—%Ig(l‘) = lpy1(x) — L—1(2),

Similarly, the beam rms edge radius can be explicitly calculated as:
OT “dr r3n(r)
o “dr rn(r)
2
Ty I()(k‘()re) 4 Ig(k()Te)
D) = — 2+ (kor,) =<2
(Tc) Iz(korc) (korc)Q - (hor )Iz(koTe)
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The perveance is then calculated as:

-[2 (k()?"e)
Io(kore)

qA

— = (k 2
2meomey; B c? (ksore)

Q=

The edge and perveance equations can then be combined to obtain a parameter
constriant relating k,r, to desired system parameters:

Rorh _ I(kore) 4 [, To(kore)
Q  I(kore)  (kore)? | Ia(kore)

Io(kore)Is(kore)

) e o)

Here, any of the 3 system parameters on the LHS may be eliminated using the
matched beam envelope equation to effect alternative parameterizations:

2
kZors — Q_ E_g =0 —> climinate any of: k3, r, Q
Ty Ty
The rms equivalent beam concept can also be applied to show that:
k%orf 1 rms equivalent KV measure of 0/00
Q T 1= (0/00)2 + Space-charge really nonlinear and the
Waterbag equilibrium has a spectrum of
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The constraint is plotted over the full range of effective space-charge strength:

1 IOQ(IC()TE) 4 |: I()(koTe)

- I2(koTe)

1—(0/00)? I3(kore) (kore)? + (kore) }

122(k0re)

100

10

]{07‘5

0.1
0.0 0.2 0.4 0.6 0.8 1.0

Tune Depression, o /oy

+ Equilibrium parameter kore uniquely fixes effective space-charge strength
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/Il Aside: Parameter choices and limits of the constraint equation

Some prefer to use an alternative space-charge strength measure to 0 /o0
and use a so-called self-field parameter defined in terms of the on-axis plasma
frequency of the distribution:

Self-field parameter:

A 2 2 A
sy = “p ngzq— n=n(r =0)
=5.3432,.212
273,65 ¢* k30 meo = on-axis plasma density

For a KV equilibrium, s, and ¢ /o are simply related:

p 2
- (3)
0

For a waterbag equilibrium, S and kg7, (from which o / oo can be calculated)
are related by:
1
sp=1— ———
Iy (kOTe)
Generally, for smooth (non-KV) equilibria, Sp turns out to be a logarithmically
insensitive parameter for strong space-charge strength (see tables in S6 and S7) ///
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Use parameter constraints to plot properties of waterbag equilibrium 2) Phase-space boundary of distribution at fixed line charge and focusing strength

Q=10"" kgo = const
1) Density and temperature profile at fixed line charge and focusing strength
N —
Q=10"" k5o = const i o ojoy = 0.1
N =08 Density
1.0 o/oy=0.1 E o Profile
0.8 B 0.4
'z 0.2
0.6 a 00
I 0 0005 001 0015 002 0025 003
= 0.4 Radius, kg,r
E 0.2 0.030
s 0.025 a/oo = 0.9 Edee of
0. = ge o
0 0005 001 0015 002 0025 003 T 0020 distribution
Radi ! 0015 1 oh
adius, kg,r 2 -
s [, £ ool in phase-space
+ Parabolic density for weak space-charge and flat in the core out to a sharp edge 0.005
for strong space charge 0,000
+ For the waterbag equilibrium, temperature T(r) is proportional to density n(r) T 0 0005 001 0015 002 0025 003
so the same curves apply for T(r) Radius, kgor
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3) Summary of scaled parameters for example plots: S7: Continuous Focusing: The Thermal Equilibrium Distribution:
[Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990) and
Q=101 Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008)]
aloo| s k?fgg kore :_Z k% 10% X kgoey In an infinitely long continuous focusing channel, collisions will eventually relax
N the beam to thermal equilibrium. The Fokker-Planck equation predicts that the
0.9 10.2502 5.263 1.112 1.217/39.81  0.4737 unique Maxwell-Boltzmann distribution describing this limit is:

0.8 [0.4666 2.778 1.709 1.208|84.87  0.2222 Hyest
lim f; oxexp —r
§—00

0.6 |0.7916 1.563 2.979 1.183]201.5 0.09375 Hyes = Single particle Hamiltonian of beam
in rest frame (energy units)

0.7 10.6477 1.961 2.304 1.197|137.5  0.1373

0.5 10.8968 1.333 3.821 1.166|283.8 0.06667
T = const Thermodynamic temperature

0.4 10.9626 1.190 4.978 1.144|398.7 0.04762 .
(energy units)

0.3 10.9928 1.099 6.789 1.118/579.3 0.03297 Beam propagation time in transport channel is generally short relative to collision time,
0.2 [0.9997 1.042 10.25 1.085925.6 0.02083 inhibiting full relaxation
+ Collective effects may enhance relaxation rate
0.1 [1.0000 1.010 20.38 1.046|1938. 0.01010 - Wave spectrums likely large for real beams and enhanced by
transient and nonequilibrium effects
- Random errors acting on system may enhance and lock-in phase mixing
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Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann
distribution (careful on frame for temperature definition!) is:

my By c*in ox (_m%ﬁfCQbh)

FLlH) = —5 % T

Temperature
T = const (energy units, lab frame)

) n(r = 0) = N, = const on-axis density
= 7x Ty ¢(r =0) =0 (reference choice)
The den51ty can then be conveniently calculated in terms of a scaled stream
function:

1 q¢
HL = —X + - k‘ +
J_ BoX J_ 72ﬁ§02

n(r) = /d2:c fi =ne?

P(r) = m%ﬁbcw <m7”5bc k3o "2 id))
b

and the x- and y-temperatures are equal and spatially uniform with:

Az, 2 fy
T — 2 2 f L
x ’meﬁb C fd2 /l fJ_

=T = const
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Scaled Poisson equation for continuous focusing thermal equilibrium

To describe the thermal equilibrium density profile, the Poisson equation must be
solved. In terms of the scaled streamfunction:

10 oY _3J
— —14+A—e?
pap( 8p>

_ o
bp=0=0 5 (p=0)=0
P
Here, 172
?ebyehlengtlll(formeq p= " Scaled radial coordinate
n rom the peak, on-axis ’Yb)\D in rel. Debye lengths
’n beam density Y g

Plasma frequency formed
from on-axis beam density

273 ,32021%0

‘ 2,

T \1/2
e Ap = <T)
wsm

et

A=

Dimensionless parameter relating
— 1  the ratio of applied to space-charge
defocusing forces

+ Equation is highly nonlinear, but can be solved (approximately) analytically
# Scaled solutions depend only on the single dimensionless parameter A
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Numerical solution of scaled thermal equilibrium Poisson equation in
terms of a normalized density

= 10
T

Tr 0.8
£ 06
=

S 04
=
=02
=}

[}

A 0.0

0 5 10 15 20 25

Radius, p = r/(1Ap)

+ Equation is highly nonlinear and must, in general, be solved numerically
- Dependance on A is very sensitive
- For small A, the beam is nearly uniform in the core

+ Edge fall-off is always in a few Debye lengths when A is small
- Edge becomes very sharp at fixed beam line-charge
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/Il Aside: Approximate Analytical Solution for the Thermal Equilibrium
Density/Potential
Using the scaled density
n_ b
=—-=ce€

7
the equilibrium Poisson equation can be equivalently expressed as:

N 1 (ON\®> 10N e
- — = —(1+A)N
op? <3p> pop +2)
N(p=0)=1

= =o0

9p | o

This equation has been analyzed to construct limiting form analytical solutions
for both large and small A [see: Startsev and Lund, PoP 15, 043101 (2008)]
+ Large A solution => warmbeam  => Gaussian-like radial profile
+*Small A solution => cold beam  => Flat core, bell shaped profile
- Highly nonlinear structure, but approx solution has very high accuracy
out to where the density becomes exponentially small!
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Large A solution:

N ~ exp [—#pz}

+ Accurate for A 2 0.1 [For full error spec. see: PoP 15, 043101 (2008)]

Small A solution:
B (1+1A+ £A2)°
{1+ 3AI(p) + £[AL(p)2}

[For full error spec. see: PoP 15, 043101 (2008)]

Io(x) = 0" order Modified
Bessel Function
of 1" kind

+ Highly accurate for A < 0.1

Special numerical methods have also been developed to calculate N or
1) = —In N to arbitrary accuracy for any value of A, however small
[see: Lund, Kikuchi, and Davidson, PRSTAB, to be published, (2008) Appendices F, G]
+ Extreme flatness of solution for small A < 10~® creates numerical
precision problems that require special numerical methods to address

+ Method was used to verify accuracy of small A solution above
"

SM Lund, NE 290H, Spring 2009 Transverse Equilibrium Distributions 105

Parameters constraints for the thermal equilibrium beam

Parameters employed in fi (H 1) to specify the equilibrium are (+ kinematic
factors): S

n, T, A

Parameters preferred for accelerator applications:

kgo, Q, €z =¢ey=¢
Needed constraints can be calculated directly from the equilibrium:

T > ;
= —— dop e ¥
Q (meﬂ;?Cz) /o PP
T T T
2 ey =4 4
Kooss (’7me202> { (%7715302) - Q_
2 ( T ) 1+A
A0 vomBic? ) 2(wAp)?
T T
2 — 1 2\ 2 — 4 2
K 6%??%6502 (@1 (%mﬁfcz) "

1 T
Tg = 4<.TL’2>L = k_éo [4 (Fmﬂ?@) + Q:|
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Integral function
of A only

Also useful,
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Example of derivation steps applied to derive previous constraint equations:

2T o0 _
Line charge: A= / dp pe ¥
2q Jo

[e9) 3 ,J)
rms edge radius: 2 =4(z%), = 2%?/\2]3%
Jo dp pe=?

rms edge emittance:

ey =5 = 16[(2?) L (™)1 - %‘"ﬁ]

T T
=16——=@H, =4 ——— |1}
YemBEc? ()1 <7bm5502> "o

Matched envelope equation:

0
2
€
rb'+k§0rb———r—g:0
b
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These constraints must, in general, be solved numerically
+ Useful to probe system sensitivities in relevant parameters

Examples:
1) rms equivalent beam tune depression as a function of A
o _ Q o [fooodp pe¥)? e R.H.S function
P k2 r2 00 3, of A only
0 Bo' b (1 + A) f(] dpp €
5.0
25 rms equivalent KV measure
0.0 of /00
<13 -25 + Space-charge really
B —30 nonlinear and the Thermal
= 73 equilibrium has a spectrum
-10.0 of o
-12.5
-15.0

0.0 0.2 0.4 0.6 0.8 1.0
Tune Depression, o/oq
# Small rms equivalent tune depression corresponds to extremely small values of A

- Special numerical methods generally must be employed to calculate equilibrium
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2) Density profile at fixed line charge and focusing strength

Q=10" kéo = const
S
= 10 o/op=0.1
v 0.8
S
Sls 06
g
[
0.4
2
z 02
S
)
A

o
o

0 0005 001 0.015 0.02 0.025 0.03
Radius, kgor

# Density profile changes with scaled T
- Low values yields a flat-top => o /09 — 0
- High values yield a Gaussian like profile => 4 Jog — 1
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3) Distribution contours at fixed line charge and focusing strength

_1n—4 2
Q =10 kﬂo = const fL(HL)/f.(0) Contours, /g = 0.5
oo = 0.1 a) 0.006 0.1 <)
0.005 .
E 0.004 o
5] 0.003 0.5
T .6
- Z 0002 7
ooy = 0.9 0.001 “-E“

0.000

0.005 001 0.015 0.02 0.025 003 00 02 04 06 08 1.0 12 14

Radius, kgor x10~2 Radius, ksor
Radial
JL(HL)/f.(0) Contours, o/oy = 0.9 fL(H.1)/f(0) Contours, /oy = 0.1 scales
0.025 0.0012 change

b) —_—0a d)

0.020 \ 0.0010
e 0.

0.0008

0.2 0.1
0.015 — d o
:0.0006 .
0010 — 0 ) :
?\hm 00004 0.7
0005 L "F \\ ”-i 0.0002 . ﬂ
Y 0.0000

0000 0 0005 0.01 0.015 002 0025 003 0.0 0.2 0.4 0.6 0.8 1.0
Radius. kaor x10~2 Radius. kaor
+ Particles will move approximately force-free till approaching the edge where it is
rapidly bent back (see Debye screening analysis this lecture)
SM Lund, NE 290H, Spring 2009

Angle, |7, |
Angle, |7 |
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Scaled parameters for examples 2) and 3)

Q=10"
O’/O‘O A Sp kﬁO'J/b/\D #EZCQ 103 x k505b
0.9 [1.851 0.3508| 12.33 1.065x10~* 0.4737

0.8 |6.382x10™% 0.6104| 6.034 4.444x107° 0.2222
0.7 [2.649x10~" 0.7906| 3.898 2.402x10~° 0.1373
0.6 |1.059x10~ 0.9043| 2.788 1.406x10~° 0.09375
0.5 [3.501x1072 0.9662| 2.077 8.333x10~% 0.06667
0.4 [7.684x1073 0.9924| 1.549 4.762x107° 0.04762
0.3 [6.950x10™% 0.9993| 1.112 2.473x107° 0.03297
0.2 |6.389x10~% 1.0000| 0.7217 1.042x107° 0.02083
0.1 [4.975x107'2 1.0000| 0.3553 2.525x10~7 0.01010
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Comments on continuous focusing thermal equilibria

From these results it is not surprising that the KV model works well for real beams
with strong space-charge (i.e, rms equivalent 0/0¢ small) since the edges of a
smooth thermal distribution become sharp

+ Thermal equilibrium likely overestimates the edge with since T = const, whereas a
real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations
from the KV model

+ Nonlinear terms can radically change the stability properties (stabilize fictitious
higher order KV modes)

# Smooth distributions contain a spectrum of particle oscillation frequencies that are
amplitude dependent
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S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]

We will show that space-charge and the applied focusing forces of the lattice
conspire together to Debye screen interactions in the core of a beam with high
space-charge intensity

+ Will systematically derive the Debye length employed by
J.J. Barnard in the Introductory Lectures
* The applied focusing forces are analogous to a stationary neutralizing species in

Place a small test line charge at » = 0 in a thermal equilibrium beam:
10 ( 9¢ q [ 2 Ae 6(r)
_— —_ = — = d H _ —
ror <r 87") €0 / 2y fi(HL) 2mey 1

Thermal Equilibrium Test Line-Charge
Set:

¢ = ¢o +0¢

0¢ = Perturbed potential from test line-charge

¢o = Thermal Equilibrium potential with no test line-charge

a plasma o ) ] )
. Assume thermal equilibrium adapts adiabatically to the test line-charge:
/l Review: i i
Free-space field of a “bare” test line-charge )\, at the origin y = ( n(r) = /d%l FL(HL) =he ¥ ~pevo(r)g=as¢/GPT) q0¢
<1
2
~ T
o(r) 10 0 Ae O(r) ~ fe—Po(m) (1 _ q0¢ b
p(r) = ——= ——|lr=)=—-—— = N2T
2mr ror \  Or 2mey T Yield b
ields:
solution (use Gauss' theorem) shows long-range interaction 10 . 9\ _ ¢ He—to(r) _ At O(r)
\ ror or ) eova 2meg T
¢ = —==In(r) + const ) o )
(297;5 €0 ) Assume a relatively cold beam so the density is flat near the test line-charge:
E=—— ="t L _do(r)
" Oor  2megr // fe~ Vo) ~ f
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This gives: General Exterior Solution: (r # 0)

12(T@> 0¢ _ _ A 0(r)

ror\' or ) VENE, 27meq

1/2 .
A — el _ Debye radius formed from peak,
b= @>n " on-axis beam density

Derive a general solution by connecting solution very near the test charge with the
general solution for r nonzero:

Near solution: (r—0)

Negligible --->

16(@) e 5(r)

1ENT, ror \"or _727reo r

The free-space solution can be immediately applied:

In(r) + const
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The delta-function term vanishes giving:

19 ([ 85 B _
;a—p<f°a—p>*5¢*0 = S0

This is a modified Bessel equation of order 0 with general solution:

6¢ = C11o(p) + C2Ko(p)

C1, C3 = constants

Iy(xz) = Modified Bessel Func, 1* kind
Ko(x) = Modified Bessel Func, 2™ kind

Connection and General Solution:

Use limiting forms:

pl p>1
Io(p) = 1+ 6(p°) Io(p) — \/62—%[1 +0(1/p)]

Ko(p) — —[In(p/2) +0.5772- -+ O(p?)]
Kolp) = |31+ €/p)
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Comparison shows that we must choose for connection to the near solution and
regularity at infinity:

Ci=0
2 2meg

General solution shows Debye screening of test charge in the core of the beam:

At r K Order Zero
09 = 2meg Ko (’Yb)\D ) o(@) Modified Bessel Function

o L /(o)

- 2\/%60 T/('Yb)\D)

> YWAD

+ Screened interaction does not require overall charge neutrality!

- Beam particles redistribute to screen bare interaction

- Beam behaves as a plasma and expect similar collective waves etc.
+ Same result for all smooth equilibrium distributions and in 1D, 2D, and 3D

- Reason why lower dimension models can get the “right” answer for

collective interactions in spite of the Coulomb force varying with dimension
+ Explains why the radial density profile in the core of space-charge dominated beams
are expected to be flat
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S9: Continuous Focusing: The Density Inversion Theorem
Shows x and x' dependencies are strongly connected in an equilibrium

. 1 1
o Ho= gt ko 4 s
fr=fi(Hy) L brb
= 5x7+u(r) 1
: 2 _ 12 .2 q9
calculate the beam density N Y= 3 kgor® + R
n(r) = /d%’l fL(HL) = 27r/ dU fL(U +9(r))
0
differentiate:
on o 5} o %)
AL dU — =2 dU —
55 =2 | s n Uy = v )
0
—2r lim f% V) — 20 fL (%)
bounded distribution
_ i@ _ Ly 5 qo(r)
- V) = ket e
Assume that n(r) is specified, then the Poisson equation can be integrated:
q9(r=0) 1,5, , q /Tdf /i:: 5
. L4 Ul A - = |a
V)~ e = 3~ e | T ) 4 ()
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For n(r) = const L -
« /dfr/dffn(F) o r?
o " Jo

This suggests that Y(r) is monotonic in » when d n(r)/dr is monotonic. Apply

the chain rule: . .
Density Inversion Theorem

1 On 1 on(r)/or
P = gl =g S
7T ¢1¢:HL 7T¢ U(r)/Or | y—p,
_ 12 .2 q
P(r) = 5/?507” + iRE
For specified monotonic n(r) the density inversion theorem can be applied with
the Poisson equation to calculate the corresponding equilibrium f, (H )

Comments on density inversion theorem:

+ Shows that the x and x' dependence of the distribution are inextricably linked for an
equilibrium distribution function f (H )
- Not so surprising -- equilibria are highly constrained
+1If df | (H1)/dH, <0 then the kinetic stability theorem (see: S.M. Lund, lectures on
Transverse Kinetic Stability) shows that the equilibrium is also stable
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// Example: Application of the inversion theorem to the KV equilibrium

o, 0 r<my % _ _
= { 0, mp<r T T Ro(r —rv)
o onfor
b op/or property of delta-function:
_ _fd(r—m) S(x — i)
_ _nd(r—m) Z _o
O/ y—r, flzi) =

= —6(Y(r) = (b))

use:  P(rp) = Hilx =0 = Hiyp

x;is root of f

1 on n o
:—O(HLfHLb)

1 on Expected
27 O G=H, 2T

KV form

—» | fi(HL) =

1"

Similar application of derivatives with respect to Courant-Snyder invariants
can “derive” the needed form for the KV distribution of an elliptical beam
without guessing.
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S10: Comments on the Plausibility of Smooth, Vlasov Equilibria
in Periodic Transport Channels

The KV and continuous models are the only (or related to simple transforms
thereof) known exact beam equilibria. Both suffer from idealizations that render
them inappropriate for use as initial distribution functions for detailed modeling
of stability in real accelerator systems:

+ KV distribution has an unphysical singular structure giving rise to collective
instabilities with unphysical manifestations
- Low order properties (envelope and some features of low-order plasma
modes) are physical and very useful in machine design
+ Continuous focusing is inadequate to model real accelerator lattices with periodic
or s-varying focusing forces
- Kicked oscillator intrinsically different than a continuous oscillator

There is much room for improvement in this area, including study if smooth
equilibria exist in periodic focusing and implications if no exact equilibria exist.
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Large envelope flutter associated with strong focusing can result in a rapid high-
order oscillating force imbalance acting on edge particles of the beam

Temperature Flutter 5
Elliptical rms Equivalent Beam Example Systems (rmax rmin)

AG Trans: o, = 60° | ~25

AG Trans: o,= 100° ~4.9

1 Matching Section ~ 15 Possible

€2 o Tyr? ~ const = T}, -
r$
Characteristic Plasma Frequency of Collective Effects

Continuous Focusing Estimate

L . o
Oplasma ~ T—:\/2Q Typical: oplasma ~ 105°/period

+ Temperature asymmetry in beam will rapidly fluctuate with lattice periodicity
- Converging plane => Warmer
- Diverging plane => Colder
+ Collective plasma wave response slower than lattice frequency
- Beam edge will not be able to adapt rapidly enough
- Collective waves will be launched from lack of local force balance near the edge
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The continuous focusing equilibrium distribution suggests that varying Debye
screening together with envelope flutter would require a rapidly adapting beam
edge in a smooth, periodic equilibrium beam distribution

p, = et o mowGhetH
L o P T

Continuous Focusing Thermal Equilibrium Beam
Self Consistent Beam Edge

T T
1 clog=0.1 4
o~ s Q =10
™
— r
= aig a T i P 2%
—E  ps ]
~a Ol | 4gin 02| 2337107
o™ 02 [g3%6n10 | 1p4xi0™
m;.::, 0.6 03 | Gesx 10— 247z 108 i
NS 04 [76gx 10 | 476107
= 05 T3son 102 [ Bazwio®
0.4 08 | eéx 10t 14lz10™ i
- 07 | 265x 107t 240x 107
) o0F = ==
= / IR FETEYS
“ 02t 09 |18 Io7wi0~ | -
=
8 c/og=0.9

0 | | L
0 0.005 001 0015 002 0025 003
Radius, kggr
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It is clear from these considerations that if smooth “equilibrium” beam
distributions exist for periodic focusing, then they are highly nontrivial

Would a nonexistence of an equilibrium distribution be a problem:

+ Real beams are born off a source that can be simulated
- Propagation length can be relatively small in linacs
+ Transverse confinement can exist without an equilibrium
- Particles can turn at large enough radii forming an edge
- Edge can oscillate from lattice period to lattice period
without pumping to large excursions

—3 Might not preclude long propagation with preserved
statistical beam quality

Even approximate equilibria would help sort out complicated processes:

+ Reduce transients and fluctuations can help understand processes in simplest form
- Allows more “plasma physics” type analysis and advances
# Beams in Vlasov simulations are often observed to “settle down” to a fairly regular
state after an initial transient evolution
- Extreme phase mixing leads to an effective relaxation
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund

Lawrence Berkeley National Laboratory
BLDG 47R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

SMLund@1bl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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